112 research outputs found

    Higgs Searches at the Tevatron

    Full text link
    One of the highest priority physics goals for the upgraded Tevatron experiments, CDF and D0, is the search for the Higgs boson. We present the initial results from both experiments, based on 40--90 pb−1^{-1} integrated luminosity, of Higgs searches in several final states, including WHWH and ZHZH, H→WWH\to WW, and doubly-charged Higgs.Comment: 5 pages, 4 figures, 1 table, talk presented at Moriond QCD 200

    A Folkman Linear Family

    Full text link
    For graphs FF and GG, let F→(G,G)F\to (G,G) signify that any red/blue edge coloring of FF contains a monochromatic GG. Define Folkman number f(G;p)f(G;p) to be the smallest order of a graph FF such that F→(G,G)F\to (G,G) and ω(F)≤p\omega(F) \le p. It is shown that f(G;p)≤cnf(G;p)\le cn for graphs GG of order nn with Δ(G)≤Δ\Delta(G)\le \Delta, where Δ≥3\Delta\ge 3, c=c(Δ)c=c(\Delta) and p=p(Δ)p=p(\Delta) are positive constants.Comment: 11 page

    Dynamical properties of quasiparticles in a tunable Kekul\'{e} graphene superlattice

    Full text link
    We investigate the dynamical properties of quasiparticles in graphene superlattices with three typical Kekul\'{e} distortions (i.e., Kekul\'{e}-O, Kekul\'{e}-Y and Kekul\'{e}-M). On the one hand, we numerically show the visualized evolution process of Kekul\'{e} quasiparticles; while on the other hand, we analytically obtain the centroid trajectory of the quasiparticles, and both of them agree well with each other. The results reveal that the relativistic Zitterbewegung (ZB) phenomenon occurs in the Kekul\'{e} systems. Furthermore, through analyzing the frequency of ZB, we unveil the one-to-one relationship between ZB and Kekul\'{e} textures, i.e., the ZB frequenies of Kekul\'{e}-O, Kekul\'{e}-Y and Kekul\'{e}-M quasiparticles feature single, double and six frequencies, respectively. Finally, we propose a scheme to distinguish among different Kekul\'{e} textures from the dynamical perspective. The predictions in this paper are expected to be experimentally verified in the near future, so as to facilitate further research of Kekul\'{e} structures in solid materials or artificial systems

    Global-regional nested simulation of particle number concentration by combing microphysical processes with an evolving organic aerosol module

    Get PDF
    Aerosol microphysical processes are essential for the next generation of global and regional climate and air quality models to determine particle size distribution. The contribution of organic aerosols (OAs) to particle formation, mass, and number concentration is one of the major uncertainties in current models. A new global–regional nested aerosol model was developed to simulate detailed microphysical processes. The model combines an advanced particle microphysics (APM) module and a volatility basis set (VBS) OA module to calculate the kinetic condensation of low-volatility organic compounds and equilibrium partitioning of semi-volatile organic compounds in a 3-D framework using global–regional nested domain. In addition to the condensation of sulfuric acid, the equilibrium partitioning of nitrate and ammonium, and the coagulation process of particles, the microphysical processes of the OAs are realistically represented in our new model. The model uses high-resolution size bins to calculate the size distribution of new particles formed through nucleation and subsequent growth. The multi-scale nesting enables the model to perform high-resolution simulations of the particle formation processes in the urban atmosphere in the background of regional and global environments. By using the nested domains, the model reasonably reproduced the OA components obtained from the analysis of aerosol mass spectrometry measurements through positive matrix factorization and the particle number size distribution in the megacity of Beijing during a period of approximately a month. Anthropogenic organic species accounted for 67 % of the OAs of secondary particles formed by nucleation and subsequent growth, which is considerably larger than that of biogenic OAs. On the global scale, the model well predicted the particle number concentration in various environments. The microphysical module combined with the VBS simulated the universal distribution of organic components among the different aerosol populations. The model results strongly suggest the importance of anthropogenic organic species in aerosol particle formation and growth at polluted urban sites and over the whole globe.Aerosol microphysical processes are essential for the next generation of global and regional climate and air quality models to determine particle size distribution. The contribution of organic aerosols (OAs) to particle formation, mass, and number concentration is one of the major uncertainties in current models. A new global-regional nested aerosol model was developed to simulate detailed microphysical processes. The model combines an advanced particle microphysics (APM) module and a volatility basis set (VBS) OA module to calculate the kinetic condensation of low-volatility organic compounds and equilibrium partitioning of semi-volatile organic compounds in a 3-D framework using global-regional nested domain In addition to the condensation of sulfuric acid, the equilibrium partitioning of nitrate and ammonium, and the coagulation process of particles, the microphysical processes of the OAs are realistically represented in our new model. The model uses high-resolution size bins to calculate the size distribution of new particles formed through nucleation and subsequent growth. The multi-scale nesting enables the model to perform high-resolution simulations of the particle formation processes in the urban atmosphere in the background of regional and global environments. By using the nested domains, the model reasonably reproduced the OA components obtained from the analysis of aerosol mass spectrometry measurements through positive matrix factorization and the particle number size distribution in the megacity of Beijing during a period of approximately a month. Anthropogenic organic species accounted for 67 % of the OAs of secondary particles formed by nucleation and subsequent growth, which is considerably larger than that of biogenic OAs. On the global scale, the model well predicted the particle number concentration in various environments. The microphysical module combined with the VBS simulated the universal distribution of organic components among the different aerosol populations. The model results strongly suggest the importance of anthropogenic organic species in aerosol particle formation and growth at polluted urban sites and over the whole globe.Peer reviewe

    Involvement of Glutamate Transporter-1 in Neuroprotection against Global Brain Ischemia-Reperfusion Injury Induced by Postconditioning in Rats

    Get PDF
    Ischemic postconditioning refers to several transient reperfusion and ischemia cycles after an ischemic event and before a long duration of reperfusion. The procedure produces neuroprotective effects. The mechanisms underlying these neuroprotective effects are poorly understood. In this study, we found that most neurons in the CA1 region died after 10 minutes of ischemia and is followed by 72 hours of reperfusion. However, brain ischemic postconditioning (six cycles of 10 s/10 s reperfusion/re-occlusion) significantly reduced neuronal death. Significant up-regulation of Glutamate transporter-1 was found after 3, 6, 24, 72 hours of reperfusion. The present study showed that ischemic postconditioning decreases cell death and that upregulation of GLT-1 expression may play an important role on this effect

    Status Report of the DPHEP Study Group: Towards a Global Effort for Sustainable Data Preservation in High Energy Physics

    Full text link
    Data from high-energy physics (HEP) experiments are collected with significant financial and human effort and are mostly unique. An inter-experimental study group on HEP data preservation and long-term analysis was convened as a panel of the International Committee for Future Accelerators (ICFA). The group was formed by large collider-based experiments and investigated the technical and organisational aspects of HEP data preservation. An intermediate report was released in November 2009 addressing the general issues of data preservation in HEP. This paper includes and extends the intermediate report. It provides an analysis of the research case for data preservation and a detailed description of the various projects at experiment, laboratory and international levels. In addition, the paper provides a concrete proposal for an international organisation in charge of the data management and policies in high-energy physics

    The Long-Baseline Neutrino Experiment: Exploring Fundamental Symmetries of the Universe

    Get PDF
    The preponderance of matter over antimatter in the early Universe, the dynamics of the supernova bursts that produced the heavy elements necessary for life and whether protons eventually decay --- these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our Universe, its current state and its eventual fate. The Long-Baseline Neutrino Experiment (LBNE) represents an extensively developed plan for a world-class experiment dedicated to addressing these questions. LBNE is conceived around three central components: (1) a new, high-intensity neutrino source generated from a megawatt-class proton accelerator at Fermi National Accelerator Laboratory, (2) a near neutrino detector just downstream of the source, and (3) a massive liquid argon time-projection chamber deployed as a far detector deep underground at the Sanford Underground Research Facility. This facility, located at the site of the former Homestake Mine in Lead, South Dakota, is approximately 1,300 km from the neutrino source at Fermilab -- a distance (baseline) that delivers optimal sensitivity to neutrino charge-parity symmetry violation and mass ordering effects. This ambitious yet cost-effective design incorporates scalability and flexibility and can accommodate a variety of upgrades and contributions. With its exceptional combination of experimental configuration, technical capabilities, and potential for transformative discoveries, LBNE promises to be a vital facility for the field of particle physics worldwide, providing physicists from around the globe with opportunities to collaborate in a twenty to thirty year program of exciting science. In this document we provide a comprehensive overview of LBNE's scientific objectives, its place in the landscape of neutrino physics worldwide, the technologies it will incorporate and the capabilities it will possess.Comment: Major update of previous version. This is the reference document for LBNE science program and current status. Chapters 1, 3, and 9 provide a comprehensive overview of LBNE's scientific objectives, its place in the landscape of neutrino physics worldwide, the technologies it will incorporate and the capabilities it will possess. 288 pages, 116 figure

    Genome-wide association analysis identifies 30 new susceptibility loci for schizophrenia

    Get PDF
    We conducted a genome-wide association study (GWAS) with replication in 36,180 Chinese individuals and performed further transancestry meta-analyses with data from the Psychiatry Genomics Consortium (PGC2). Approximately 95% of the genome-wide significant (GWS) index alleles (or their proxies) from the PGC2 study were overrepresented in Chinese schizophrenia cases, including ∼50% that achieved nominal significance and ∼75% that continued to be GWS in the transancestry analysis. The Chinese-only analysis identified seven GWS loci; three of these also were GWS in the transancestry analyses, which identified 109 GWS loci, thus yielding a total of 113 GWS loci (30 novel) in at least one of these analyses. We observed improvements in the fine-mapping resolution at many susceptibility loci. Our results provide several lines of evidence supporting candidate genes at many loci and highlight some pathways for further research. Together, our findings provide novel insight into the genetic architecture and biological etiology of schizophrenia

    Numerical optimization of soft-mold aided co-curing process of advanced grid-stiffened composite structures

    Get PDF
    The co-curing process for advanced grid-stiffened (AGS) composite structure is a promising manufacturing process, which could reduce the manufacturing cost, augment the advantages and improve the performance of AGS composite structure. An improved method named soft-mold aided co-curing process which replaces the expansion molds by a whole rubber mold is adopted in this paper. This co-curing process is capable to co-cure a typical AGS composite structure with the manufacturer’s recommended cure cycle (MRCC). Numerical models are developed to evaluate the variation of temperature and the degree of cure in AGS composite structure during the soft-mold aided co-curing process. The simulation results were validated by experimental results obtained from embedded temperature sensors. Based on the validated modeling framework, the cycle of cure can be optimized by reducing more than half the time of MRCC while obtaining a reliable degree of cure. The shape and size effects of AGS composite structure on the distribution of temperature and degree of cure are also investigated to provide insights for the optimization of soft-mold aided co-curing process
    • …
    corecore